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NOMENCLATURE

radius of ring-wing

moment coefficient of ing-wing, 32e Equation (3.12)
normal foice coefficient of ring-wing, see Equation (3.11)
see Equation (2.29)

F see Fquation (2.57)

R SRV SR

G Green's function, see Equaticens (2.16) and (2.17)
& see Equation (2.26)

- R H(x) heaviside step function

3 1.3,8  see Figure 2.1

7 k see Equations (2.44) and (3.3)
Kk see Equation (3.10)

5 K(k) see Equation {2.30)

Ko modified Bessel function

JzﬁKX) integrated kerncl function, see Equation (3.8)
viscous kernel functions, see Equations (2.47) and (2.48)

S
\
< ;

or #(x) kernel functions
2 length of ring-wing, see Figure 2,2
2(e,8) see Equations (2.14) and (2.24)

ey

SRR

L reference length
L% see Equation (2.24)
‘ ] = R/{R| unit normal on S
i R normal to control surface S, see Figure 2.1
- p perturbation pressure
':, 9 = ’vo|
= r,0 unit vectors, see inset in Figure 2.1
& - R{x) body or control surface radius
S see Figure 2.1
Th Chebyshev polynomial of the first kind of degree n, see Reference 6
T(k') see Equation (3.9)

T(x,g) see Equation (2.15)

Vo free stream velocity

A/ velocity field of non-lifting axial flow

z,ﬁ generalized upwash, see Equation (2.36)

])%0,%1 omponents of ”g. see Equations (2.38), (2.39) and (2.40)




upwash fir. .ion, see Equation (2.2)

cylindrical cwordinates, see Figure 2.1

= (x,y,z) Cartesian coordinates, see Figure 2.1

2x/2

axial coordinates of body fore and aft ends, see Figure 2.1
Reynolds number, see Equation (2.49)

Laplace cperator

local angle attack of ring-wing axis, see Equation (3.6)
boundary layer displacement thickness

Dirac delta function

kinematic coefficient of viscosity

free stream density

Re/4

4a/2

velocity potential

see Equation (2.22)

frequency of simpie harmonic oscillation
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I. INTRODUCTION

In Reference 1 the viscous theory of unsteady 1ift on two-dimensional
airfoils of arbitrary thickness distribution is developed in detail.
Eatensive numerical examples are given for steady and unsteady flow that
compare favorably with experimental resuits. Both the d'Alembert paradox and
the fatness paradox (see Reference 2) are resolved, and most important, the
role of viscosity in establishing a unique value of the circulatory part of
the 1ift is completely understood within the framework of this theory. The
conceot of viscous thin airfoil theory is directly applicable to other lifting
bodies, e.g., three-dimensional wings and bodies of revolution. In a recent
report (Reference 3), completed under contract to NASA, the preliminary
application of the viscous theory to a rectangular wing is presented. The
numerical results are ancouraging and reinforce the basic principles of the
two-dimensional theory.

The present report is directed towards the application of the viscous
theory to bodies of revolution. The complete unsteady potential theory is
presented and subsequently corrected for the effect of viscosity. The theory
is applied to the simple case of a ring-wing. Both numericel results and
asymptotic results are presented. For very slender ring-wings we recover the
well known results of slender body theory. For very large diameter to length
ratios we obtain a simpie asymptotic result that is in exact agreement with a
theoretical result of Ribner (Reference 4). The theoretical result is also in
approximate agreement with experimental results of Flatau (Reference 5).
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IT. VISCOUS THEORY OF LIFT FOR BODIES OF REVOLUTION
IN INCOMPRESSIBLE FLOW

A. Preliminary Remarks

Consider a body of revolution in a high Reynolds number (Re > 106)
incompressible flow (see Figure 2.1). In the absence of any disturbance that
would produce a transverse force (1ift), the body axis is aligned with the
free stream and the mean steady flow is characterized by the velocity field Vo
that we assume to be given. Suppose that the body with its boundary layer and
wake are enclosed by a cylindrical control surface S. In the domain D
exterior to S the flow is free of vorticity and thus has a velocity potential.
Forward of the plane P in Figure 2.1, the distance between the surface S and
the actual body surface will be of the order of the boundary layer thickness.
The plane P can be imagined to lie a few percent of the body length forward of
the aft end., Immediately downstream of the body, the surface S is faired
smoothly into a cylinder of constant radius that bounds the wake. As the
Reynolds number is increased beyond all bound the radius of the wake cylinder
will tend to a constant.

Ferward of the plane P, the normal momentum and pressure at a point on S
will differ from the corresponding values on the actual body surface by terms
that are of the order 5*/L where 8% s the turbulent boundary layer
displacement thickness and L is the local radius of curvature or the body
length, whichever is smaller. Terms of this order will be neglected in the
present theory. Downstream of the body the transverse load on S must tend to
zero,

To derive the viscous theory, the first step is t~» formulate the
potential flow problem in D and then recast it in the form of an integral
equation for the transverse load function (to be defined), given that the
normal momentum {(upwash) on S is specified. The local singularity in the
Joad-upwash kernel function is then modified (reduced in strength) to account
for the direct effect of viscosity. The principle for introducing the local
effect of viscosity is based on our previous work with viscous wing theory

(Reference 1).
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B. Potential Flow Problem

Let ¢ denote the perturbation potential due to an unsteady simple

harmonic transverse momentum disturbance on S.
¢ is the following:

%ﬁ.: ﬂx)sine on S: r = R(x)

grad ¢ ~0 at = (except near the wake)

and for the perturbation pressure

P Dx

|

where

o2
Dx 54

and w is the radian frequency of the specified transverse

disturbance. Also note that

oN Y ox  or

The boundary value probiem for

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

momnentum

(2.6)




N=-R'{x)r+1

is normal to the surface S.

. R
(Rl V1 +R2

(2.7)

The unit normal on S is given by

(2.8)

We use Cartesian and cylindrical coordinates interchangeably in the subsequent

development.

Before we proceed with the representation of ¢, we first consider the

inverse of the relation (2.4). Note that
s L2 4
g Y

where
ds = s'dx =V1 + R'2 dx
and

9 = [Vl

the speed of the nonlifting flow. Thus, we can write

¢
ds 9 P=q

The solution of this equation for ¢ is straightforward.

(2.9)

(2.10)

(2.11)

(2.12)

The firal result is
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X
¢(x,8) = V.,f 2(g,0)e -19T(x,8) 4 (2.13)
XN

where

1R 2
g = MIRD (2.14)

poqovan

and

X
T(x,E) =f LR'Z 4 (2.15)
g o

We refer to £ as the generalized load function since it defines completely the
local 1ift force on the surface S. Tne two point function T(x,E) is the time
required for a vortical disturbance produced by a harmonic load at station E
to convect along the surface at speed q, to station x. It is the most
important unsteady effect of body shape on the aerodynamic loads.

C. The Load-Upwash Integral Equation

Consider the Green's function

G . . (2.16)
-]
that satisfies the Poisson equation
v2G = - 4n 5(%-2) (2.17)

where 8(X) is the Dirac delta function. Form the identity

Gv2¢ - ¢v2%G = 4n § 5(X-2) (2.18)
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and integrate with respect to coordinates E over the domain D. After the

application of the divergence theorem, tne final result can be expressed in
the following form:

.1 G . 2.
o(X) = = (¢ ¢ " G aN') dA (2.19)
where
dA = R(E)dE dé’ (2.20)
and
: ey 2 2
-&F' = -« R (E) ot + ap (2°21)

The next step is to eliminate the polar angle & from the problem. It
follows from the boundary conditicn (2.2) that all dependent variables are
proportional to sin 8. Thus, we write

¢ = ®(x,r)sin o (2.22)

p = P(x,r)sin 8 (2.23)
and also for the load function

2 =.%x,r)sin ] (2.24)

Substitute Equations (2.22) and (2.2) into (2.19) to obtain

et
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&(x,r) = f,-‘- R(E)dE ( ;;?)-@”ﬂ/) (2.25)

XN

2n
g f v cos 8 do (2.26)

24r24p2.2rp cos 6

. B (1-_?. K(k) + -2 E(k 2.27
m \ k2)()~‘k2 (k) (2.27)

4
k2 - —8 (2.28)

x2+(r+p)2

n/2
E(k)=f V1-kZsinZe do (2.29)
0

/2
do
K(k) = ! (2.30
j; V1-k%sin2e )

The functions E(k) and K(k) are standard elliptic integrals (see Reference 6).
Now replace ® in the first term of (2.25) with the integral over the load
function; i.e.,

r L

S ™ 2

- P Eadddian St
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O(E,R(E)) = v, HAert)e -16T(E:E") gg

(2.31)
XN

The result is

(x,r) ;{E xﬂa)daf e “TuT(EE) ggk(a')dz‘
N g

(2.32)

41: %/%”(a)dt

XN

Finally, we compute the normal derivative of the last result on the
surface S. The last term has a Cauchy principle value so that

-

a;g//.di - lﬂ/ Q"@%di (2.33)
r+R(x) Xy 4ﬂ Xy

and the slash thrcugh the integral indicates the usual limit operation; i.e.,

f L1m f f (2.34)
XN X+

The integral equation focﬁZ’can thus be written in the following form:

(2.35)

Xy
][ A\ Hx.8)d = Hx)v,
XN

&)
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where

W(X) = Wx) + f ag%& (2.36)
XN

and

Hx.8) = +&r(’x) ,/; e teT(eh2) aa ?R(E ') (2.37)

The upper limit of integration in Equation (Z.35) is X; since the transverse
load must vanish on the wake cylinder (to the order we are working). The
generalized upwash Zy(x) can be separated into two parts; i.e.,

Hix) = P0ex) + Pl ix) (2.38)

where

Xy
”/O(X) Wiy + L o f g'%di (2.39)
X

and

]/l(x) = 21‘ “ %;—f' %d& (2.40)

The first part, 90, is completely determined in terms of the known upwash on
the surface of the body. The second part, 91, can oniy be determined after
Z’;s calzulated on the wake cylinder. The actual numerical process must be
carried out iteratively. First assume‘jfixx) to be zero and solve Equation
(2.35) for the load function. Then ca’cu]ate g on the wake cylinder by using
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Equation (2.35) with x > X1. Then calculate Zﬁﬁ- with Equation (2.40) and
correct the generalized upwash with Equation (2.38). If the wake correction
is shown ts be small, the process can be terminated. Otherwise, it will be
nacessary to recalculate a new load function.

We emphasize that the foregoing problem is not well posed as yet. The
reason 1is that the kernel function (2.37) has been derived with potential
theory and has a Cauchy <ingularity (see below Equation (2.46)). The integrai
equation (2.35) has an nigensolution. The purpose of the viscous theory is to
correct the singularity in the kernel such that Equation (2.35) has a unique
solution. We turn now to an explicit evaluation of the kernel for the case of
a ring-wing. The reason is to illustrate the basic structure of the kernel
and, in particular, the singularity. Also we show how conventional slender
body theory “tampers" with the singularity in such a way that a unique
solution is obtained in terms of an 2ffective base area.

D. Properties of the Kernel Function for a Ring-Wing in Steady Flow

Consider the ring-wing shown in Figure 2.2. For w = 0 the kernel (2.37)
can be expressed in the following form:

Hx,8) = aﬁi@-a) (2.41)

where

X
Hx) = Lim ‘[Qggd; (2.42)

The detailed evaluation of the ring-wing kernel is given in the Appendix. The
final result is

S E(k) [z V.4 2,3/2
ﬁZf(x)—-az %+ [v-'f'_;f%(k-k) g (1-k2)3/ K(k):] sgn x § (2.43)

e g e
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Figure 2.2 The Ring-Wing in Steady Flow
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where

3 K = -2 (2.44)

4 and E(k), K(k) are the elliptic integrals given by Equations (2.29) and
f (2.39). Alsc we have the following two asymptotic results for large and smal:
x, respectively:

For x > 2a

jﬁﬂ?-f%mu 12.45)
For x <€ 2a

FHixyz-2.1 (2.46)

Numerical calcul itions of the 1oad distribution on a ring-wing may be
found in Section I1i., Here we want to synthesize the viscous correction to
the kernel that is necessary to obtain a unique solution of the integral
aquation., Also we can compare the viscous and inviscid kernels with the
asymptotic kernel (2.45) that yields the results of slender body theory.

E. The Viscous Slender Body Kernel Function

The asymptotic behavior of the kernel function for small x (i.e.,
x <£ 2a, see Equation (2.46)) dictates a fundamental mathematical property of
the integral equation {2.35). That is, the equation has an eigensolution
whose magnitude is proportional to the 1ift on the body. The problem is
completely analogous to the two-dimensional wing theory discussed in Reference
1. There we have shown rigorously that the correct viscous modification of
the kernel is to convert the Cauchy singularity into a weaker logarithmic
singularity on the Stokes scale. For the ring-wing, the correct modification
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of the asymptotic result (2.46) is
~_2 _.a_/ v_x/2v ? (2.47)
Fx) = - e \anxl + eVo Ko Vel X1 /2v) .

where Ko is the modified Bessel function. For x < 2a the viscous ring-wing
kernel behaves like

Lj%;.g-g anfx} , x << 2a (2.48)

The argument for correcting the ring-wing kernel for viscosity is based
entirely on our previous work on the two-dimensiona! wing. So long as the
effect of viscosity is confined to a circumferential region that is smali
compared to the smallest geometric dimensions, the ring-wing behaves locally
like a two-dimensional wing. If we introduce the following dimensionless

parameters,
Re = - (2.49)
and
%= 5; (2.50)

then a necessary requirement for the validity of Equation (2.47) is that
1
7 K= (2.51)

This result says that the Stokes viscous length scale must be much smaller
than the smallest geometric length scale.

14
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Another remarkable property of the kernel function 1is that the
singularity near the load is notv changed when the flow becomes unsteady. Also
the complete unsteady potential theory kernel for an arbitrary body of
revolution (see Equetion (2.37)) ias a 1local Cauchy singularity like a
ring-wing of radius R(x). Thus, we can write down the complete viscous
siender body kernel without further ado:

T e a2
JHE) = Lim j; e 1uT(E',%) E;Ta‘;‘g R(E')dE" (2.52)
-y P et

The complete problem of calculating the 1ift (steady or unsteady) on a body of
revolution is to solve the integral equation (2.35) with the viscous kernel
(2.52). Tha sclution is unique because the kernel has the correct logarithmic
singularity, Specific calculations for a ring-wing are given in Section I1I.

F. The Kernel of Slender Body Theory

We assume that the asymptotic result (2.45) is valid for all x and
furtiiermore, extend it to a slender body of revolution by replacing a with
R{(x). Then the integral equation (2.35) can be written in the form

X
! f(g)\ ( 2r _ (x a))da- (]
am— L] - - - - , (2.53)
2n j;N n} Rz(x) %

where

Fe) = R(2)Az) (2.54)
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is local the force per unit length on the body. The solution of Equation
(2.53) is

= .9 |2
G = -5 [ﬂR () ]ig(x)] (2.55)
For a body at constant angle of attack, we have

Jo=-u (2.56)

and
;y— ds
where
S = nR2 (2.58)

is the local cross-sectional area of the body. We recognize the last resuit
as the familiar formula of classical slender body theory; i.e., the local
1ift force on a body of revolution at constant angle of attack is proportional
to the Jderivative of the cross-sectional area. The slender body formula
yields a rea:onably good approximation of the sectional 1ift on the forward
portion of the body. Unfortunately, for ciosed bodies of revolution, it leads
to the embarrassing result that the total 1ift is zero. In application of the
theory it has become cumstomary to introduce an "effective base area" and to
correlate measured 1ift data in terms of this artificial parameter. With the
foregoing general theory we can offer a plausible explanation of this apparent
uniqueness that is brought about by introducing the familiar slender body
approximation into the potential flow theory. We use the term apparent
uniqueness because the unknown 1ift is simply traded off for an equally
unknown base area,
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The potential flow kernel, the viscous kernel and the slender body
aporoximation thereof are plotted in Figure 2.3. From the point of view of
the theory of integral equations, the slender body approximation represents a
rather crude elimination of the fundamental Cauchy singularity in the exact
potential flow theory. Indeed, this step eliminates the possibility of an
eigensolution and thus yields a unique value for the local normal force. The
approximation is not too bad but does nct lead to a unique value for the total
lift. The viscous modification of the Cauchy singularity is the correct way
to proceed. A unique value of the total 1ift can be calculated without the
device of an artificial base arca.
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ITI. NUMERICAL RESULTS FOR A RING-WING AIRFOIL IN STEADY FLOW

To calculate the load distribution on a ring-wing, it is convenient to
introduce dimensionless variables as follows:

2x

X =& 3.1
; (3.2)

_ %2 _diameter
* " 7% " half length (3.2)
k = 1/ x2 4+ 2 (3.3)

Vol

o= w Reynolds Number referred to /4 (3.4)

If we choose the origin of coordinates to be on the axis at the midpoint on
the body axis, then the normalized integral equation can be written in the
following form:

1
.21_ f_g(v)j{/(x-v)dh a(X) (3.5)
T Ja

where
a(X) = - z,' ocal angle of attack of the body axis (3.6)
i é d N
| FW) = - Flx) (3.7) ;
¢ L X _ |
: é ¥ ;
£ !
% |
- / s
I e e T et - T T T

et T = mem TR 2 o I E e e S s ]
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and

with

JAx) = - kk(k) + e™ Ky(alx]) (3.8)

Ix}
+_82.Jf (Ix] -2s)T(k')ds
T 0

T(k') = T}T (1 - LE) K(k') - E(k*) (3.9)

L

k' = 1/ Vslegl (3.10)

We refer tonqzx) as the integrated kernel.

The overall normal force and moment coefficients have the following

integral representations:

—— AR A e ———— e T

1 .
Cy - f_?(x)dx— Lift (3.11)

A ) ()

1
= . Moment .
Oy = _/:1 xZx)ax Tom 3 (3.12)

The reference area is chosen to be one half the surface area of the ring-wing.
The moment is measured positive nose up about the center of the ring.
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The normalized integral equation {3.5) is precisely of the same form as
the equation of two-dimensional viscous thin airfoil theory (see Reference 1,

' Equation (3.25)). The kernel has a logarithmic singularity and this renders a
unique solution of Equation (3.5). The load function must admit square root
singularities at the fore and aft ends, The equation was reduced to a finite

" spectral form with an assumed polynomial approximation of the load; i.e.,

P- i Ay Tp(X)M1-x2 (3.13)

y n=

where T, is the Chebyshev polynomial of the first kind of degree n (see
Reference 6). The numerical algorithm is discussed in detail in Reference 1.

RTE

i

The integral equation was solved for a computational Reynolds number of 1000
with 20 Chebyshev polynomials to approximate the load function. It was
determined that the solution was adequately converged for this choice of
parameters.

Typical calculations of the load distribution are plotted in Figures 3.1,
3.2 and 3.3 for three values of the fineness ratio t. We note from these
calculations that the normal force coefficient is proportional to T and thus
tends to zero as T tends to zero. This result can also be deduced
analytically since the kernel is proportional to 1/t for very siender bodies.
The limiting form is in agreement with the result of slender body theory that
predicts a zero 1ift force on any u._dy of constant radius. For larger values
of the fineness ratio (see Figure 3.1 with © = 1) the load distribution tends
to a form that is similar to the 1ift on a two-dimensional airfoil. This
result can also be deduced analytically from the asymptotic form of the kernel
(see Equation (2.46)) and is intuitively expected since each section of a thin
hoop acts like a two-dimensional airfoil section at a local angle of attack
that is a maximum on the upper and lower section and tends to zero on the
sides,

To illustrate the last point we note that the normalized ring-wing
problem can be expressed in the following form for t >> 1:
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1
1 2 )
= | AN % [lnIX-Yl + eo(X-Y) KO(GIX-YI)] dY = a - a; (3.14)

where
1 ! Cn
3y = 5= -/:1 FLV)dY = 52 (3.15)

In the Timit o + =, Equation (3.13) has the unique solution,

Pix) = B2 (o . o) (3.16)

and if we integrate the last result over the chord, we obtain

21 «a
Cy = Ten/s (3.17)
or
. (3.18)

C = C
N
%Ring-Wing *M* Nay 5 Wing

The last result is precisely the same form as the 1ift curve slope of a
three-dimensional wing with the typical aspect ratio correction. It also
agrees exactly with a result derived by Ribner (Reference 4) with the more

alementary 1ifting line theory.

We compare the last asymptotic result with the experimental data of

Flatau (Reference 5) for a 11.7% thick Clark Y airfoil. Typical section data
are presented in Figure 3.4 for © = 4,9. From the € versus o data we
estimate the 1ift curve slope to be 2.0/rad. From Equation (3.17) the
theoretical result is 2.8/rad, a value somewhat larger than the experimental
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result. The discrepancy 1is probably due to two sources. First, the
theoretical formula is weakly asymptotic in the parameter =/t. For example,
if the next term in the asymptotic expansion of the denominator of Equation
(3.17) has an additive term of order (1r/'c)2 then for T = 4.9 (the Flatau
value), we can expect a 25% reduction in the theoretical value. Also the
two-dimensional section lift coefficient of a Clark Y airfoil is 5.25/rad
(Reference 7) compared to the flat plate value of 2n. This represents another
16% reduction in the calculated theoretical value.

-
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IV. SUMMARY AND RECOMMENDATIONS

The viscous theory of 1ift on bodies of revolution has been derived in
detail. The theory 1is reduied to an integral equation of the airfoil type
with a kernel function that has a logarithmic singularity. Detailed
calculations of the 1load distribution and several asymptotic results are
presented for a ring-wing airfoil (i.e., the simplest bedy of revolution).

The calculated load distributions are similar to those on a two-dimensional
L flat plate airfoil for large diameter to length ratios. It is further shown
, that the asymptotic normal force coefficient on a very large diameter

4 ring-wing is in agreement with a theoretical result of Ribner (Reference 4).
For very slender ring-wings the normal force coefficient tends to zero in
agreement with the prediction of slender body theory.

4 It is recommended that the complete steady flow theory for general bodies
of revolution be programmed and numerical results obtained for the load
distribution. The theoretical calculations should be compared to known
experimental data.
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APPENDIX
Evaluation of the Ring-Wing Kernel (Potential Flow)

-

Consider the following kernel function:

* X
& . az
Fx) = Lim f B’g dg (A.1)

r+p+a

-4 where
2% .
g&[ E_"_;-,-L do' (A.2)
b3 /0
with
3 ” 1,
R' = | B2 4 r2 4 pZ _ 2pp cose* | 1/2 (A.3)
Note that
¥
e} 1 2 E p-r cos®’
——e @ e T e - = . (Ao4)
orop R orog [ R rlsp2-2rp cose']
4
Introduce the change of variable
e' E N - e (A.S)

and substitute Equation (A.4) into Equation (A.1). The final result is

Fx) = Lin -:-‘l (A.6)
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with

and

so that

It is readily shown that

where

3
n e -
0 =f cos 6 do (1 + %)(9_::__9_25_) (A.7)
-T )\2
R = (x2 +a2)1/2 (A.8)
A2 = r2 + a2 + 2ra cos® (A.9)
To evaluate ¢, we introduce the variable
z=tan 8/2, -woCz<{= (A.10) .
.22
cos 0 = 1725 | gy - 292 (A.11)
1422 1428
=65+ 0 (A.12)
on [ (1-22) [a-z?
¢ = ¢ dZ (A-13) ‘.
0 (r-ajj; (1+22)2 (A2+z2
f?
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- 1-22) (A-22)dz
¢, = g(x)Af ( — (A.14)
1 = (22+1)3/2(22+82)1/2(A‘+22)
with
&
2x
g(x) = (A.15)
(r-a)[x2+(r-a)23}/2
i
_rea
A= (A.16)
3
and
1/2
8 =[x2 t (.’L*_a_).z.] / (A.17)
a3 x2 + (r-a)2
Now
(1-22)(A-22) 2 . _1_ AL . 1
=1+ - (A.18)
(1+22)(22+A2) A-1 22+1 A-1 ZZ+A2
3 so that
2 1 2 1
¢ = d + . A.19
\
. _ A(AZ41) 1
A<l )
(1+422)(22+A
»
32
T empreaste p— ~ -
ra




Al1 of the integrals in Equation (A.19) may be found in Reference 8, pp. 13

through 17.

Thus

Thus

where

The final result is

X e —— G(A,B)

o, =
17 a2 + (r-2)231/2

G(A,B) = (A-l)f (1-22)(A-2%) dz

(22+1)(22+A2) (22+32)1/2(22+1)1/2

or after using Equation (A.18) we can write

where

G(A,B) = (A-1)G, + 26, - A(A2+1)G,

33
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(A.25)
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" dz
G, = ——
.- a ,’:w (22+1)1/2(22+82)1’2

" dz
Gy = — ~=
! f_a (2241)3/2(2248%)1/2

- dz
G, = X
2 ‘ia (22+A2)(zz+1)1/2(22+82)1/2

L4

Consider the integral

B>t

) dz
F =jim (22+t2)1/2(7-2+82)1/2

From Reference 8, p. 51, we have

Thus

o
c
1
o
3
p—

-
L]
wiN
F 3
————
>
A

with

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)
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where K(k) in the standard elliptic integral of the first kind;

and z = %

L I T T I

6, = Liyp ( %i—) . ;—25 K* (k) (A.33)

iue.,

n/2
d
K(k) = . S (A.34
) fo V1-k2sinly !

In the complex z plane the integrand of Gy has branch points at z = % i
+ iB and simple poles at z = % iA,

With the contour shown in the
sketch we can replace G, by an integral around che branch cut and the pole at

“—

Z- plone

Branch
Cut

7 = 1A,

The result is

B /,
6y = . +2 [ at (A35)
A(A2~1)112(A2~82)1/2 J1 (AZ_tZ)(t2_1)1/2(32_t2)1/2

i prr e
=4
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where the first term is the residue at z = iA. The integral is given in
Reference 8, p. 41, so that

x 2 2 AZx2
Gy = - : -~ 4~ K(K) + - , K
2 A(A2-1)1/2(p2.82)1/2  gp2 BAZ(A2.1) ( A2-1 >(A.36)

where T is the elliptic integral of the third kind; i.e.,

1

dt

N(p,k) = =t o— » 0<Ck<C1T p>-1 (A37)
.l; (1+pt2)(1-t2) (1-k%t2)

With Equations {A.31), (A.33) and (A.37) we can write G in the following form:

GM£)=-%<1+3KU)+%}K%H (A.38)

B k

2 2,2 2
-;«A+ﬁn AR N g AS+1
B A2-1 Az-l (A2-1)1/2(A2-82)1/2

The final step in the derivation of the ring-wing kernel is to
differentiate Equation (A.38) with respect to r and take che timit as r + a.
t ic useful to note that

.. 3 1 1
%lg ar A~ 2a (A.39)
and
3 1
%ig o a2 =0 (A.40)
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Also

2,2
Lin 0 (- 22 -1 (a?,p) = EK) (A.41)
>3 2y 1-k2
and
%k u27(e2.0:213/2
57 | peg = X2/ (xP+42%) (A.42)

where E(k) is the elliptic integral of the second kind; i.e.,

®/2
E(k) =f V1-k2sin2y do (A.43)
0

After a considerable amount of detailed algebraic manipuiation, the complete
ring-wing kernel function can be expressed in the following form:

Hix) = 4= [%(—E . k) 2 (A.44)
a -

-4 (1-k2)3/2 K(k{} sgn x
k2
where

K 3 —= 0<k<1 (A.45)

We conclude this appendix by stating two asymptotic properties of the
kernel. First, we note tnat
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x| »» 28 — k = .._2.9. + 0 —93-- (A.46)
X 3
| | lxl

and the kernel has the simple approximation

- K(x) = --gg H(x) for |x| > 2a (A.47) ;

a

oy where H(x) is the heaviside step function. We refer to this asymptotic form %

g as the slender body kernel. The seccnd result is obtained for x << 2a or §
§ k 1. In this case we identify the Cauchy singularity in the kernel; i.e.,

P ~_ 2 :

i K(x) = - P for x << 2a (A.48) :

: ;

¥ Further discussion of the kernel may be found in the main text. j
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